\(\int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx\) [33]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 127 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {49 a^4 x}{16}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {49 a^4 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {41 a^4 \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a^4 \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {4 a^4 \sin ^3(c+d x)}{d}+\frac {4 a^4 \sin ^5(c+d x)}{5 d} \]

[Out]

49/16*a^4*x+8*a^4*sin(d*x+c)/d+49/16*a^4*cos(d*x+c)*sin(d*x+c)/d+41/24*a^4*cos(d*x+c)^3*sin(d*x+c)/d+1/6*a^4*c
os(d*x+c)^5*sin(d*x+c)/d-4*a^4*sin(d*x+c)^3/d+4/5*a^4*sin(d*x+c)^5/d

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2836, 2715, 8, 2713} \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {4 a^4 \sin ^5(c+d x)}{5 d}-\frac {4 a^4 \sin ^3(c+d x)}{d}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {a^4 \sin (c+d x) \cos ^5(c+d x)}{6 d}+\frac {41 a^4 \sin (c+d x) \cos ^3(c+d x)}{24 d}+\frac {49 a^4 \sin (c+d x) \cos (c+d x)}{16 d}+\frac {49 a^4 x}{16} \]

[In]

Int[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^4,x]

[Out]

(49*a^4*x)/16 + (8*a^4*Sin[c + d*x])/d + (49*a^4*Cos[c + d*x]*Sin[c + d*x])/(16*d) + (41*a^4*Cos[c + d*x]^3*Si
n[c + d*x])/(24*d) + (a^4*Cos[c + d*x]^5*Sin[c + d*x])/(6*d) - (4*a^4*Sin[c + d*x]^3)/d + (4*a^4*Sin[c + d*x]^
5)/(5*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps \begin{align*} \text {integral}& = \int \left (a^4 \cos ^2(c+d x)+4 a^4 \cos ^3(c+d x)+6 a^4 \cos ^4(c+d x)+4 a^4 \cos ^5(c+d x)+a^4 \cos ^6(c+d x)\right ) \, dx \\ & = a^4 \int \cos ^2(c+d x) \, dx+a^4 \int \cos ^6(c+d x) \, dx+\left (4 a^4\right ) \int \cos ^3(c+d x) \, dx+\left (4 a^4\right ) \int \cos ^5(c+d x) \, dx+\left (6 a^4\right ) \int \cos ^4(c+d x) \, dx \\ & = \frac {a^4 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {3 a^4 \cos ^3(c+d x) \sin (c+d x)}{2 d}+\frac {a^4 \cos ^5(c+d x) \sin (c+d x)}{6 d}+\frac {1}{2} a^4 \int 1 \, dx+\frac {1}{6} \left (5 a^4\right ) \int \cos ^4(c+d x) \, dx+\frac {1}{2} \left (9 a^4\right ) \int \cos ^2(c+d x) \, dx-\frac {\left (4 a^4\right ) \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}-\frac {\left (4 a^4\right ) \text {Subst}\left (\int \left (1-2 x^2+x^4\right ) \, dx,x,-\sin (c+d x)\right )}{d} \\ & = \frac {a^4 x}{2}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {11 a^4 \cos (c+d x) \sin (c+d x)}{4 d}+\frac {41 a^4 \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a^4 \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {4 a^4 \sin ^3(c+d x)}{d}+\frac {4 a^4 \sin ^5(c+d x)}{5 d}+\frac {1}{8} \left (5 a^4\right ) \int \cos ^2(c+d x) \, dx+\frac {1}{4} \left (9 a^4\right ) \int 1 \, dx \\ & = \frac {11 a^4 x}{4}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {49 a^4 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {41 a^4 \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a^4 \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {4 a^4 \sin ^3(c+d x)}{d}+\frac {4 a^4 \sin ^5(c+d x)}{5 d}+\frac {1}{16} \left (5 a^4\right ) \int 1 \, dx \\ & = \frac {49 a^4 x}{16}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {49 a^4 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {41 a^4 \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a^4 \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {4 a^4 \sin ^3(c+d x)}{d}+\frac {4 a^4 \sin ^5(c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.57 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {a^4 (2940 d x+5280 \sin (c+d x)+1905 \sin (2 (c+d x))+720 \sin (3 (c+d x))+225 \sin (4 (c+d x))+48 \sin (5 (c+d x))+5 \sin (6 (c+d x)))}{960 d} \]

[In]

Integrate[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^4,x]

[Out]

(a^4*(2940*d*x + 5280*Sin[c + d*x] + 1905*Sin[2*(c + d*x)] + 720*Sin[3*(c + d*x)] + 225*Sin[4*(c + d*x)] + 48*
Sin[5*(c + d*x)] + 5*Sin[6*(c + d*x)]))/(960*d)

Maple [A] (verified)

Time = 3.73 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.59

method result size
parallelrisch \(\frac {\left (588 d x +\sin \left (6 d x +6 c \right )+1056 \sin \left (d x +c \right )+381 \sin \left (2 d x +2 c \right )+144 \sin \left (3 d x +3 c \right )+45 \sin \left (4 d x +4 c \right )+\frac {48 \sin \left (5 d x +5 c \right )}{5}\right ) a^{4}}{192 d}\) \(75\)
risch \(\frac {49 a^{4} x}{16}+\frac {11 a^{4} \sin \left (d x +c \right )}{2 d}+\frac {a^{4} \sin \left (6 d x +6 c \right )}{192 d}+\frac {a^{4} \sin \left (5 d x +5 c \right )}{20 d}+\frac {15 a^{4} \sin \left (4 d x +4 c \right )}{64 d}+\frac {3 a^{4} \sin \left (3 d x +3 c \right )}{4 d}+\frac {127 a^{4} \sin \left (2 d x +2 c \right )}{64 d}\) \(107\)
derivativedivides \(\frac {a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {4 a^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+6 a^{4} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {4 a^{4} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(169\)
default \(\frac {a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {4 a^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+6 a^{4} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {4 a^{4} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(169\)
parts \(\frac {a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )}{d}+\frac {4 a^{4} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3 d}+\frac {6 a^{4} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}+\frac {4 a^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5 d}\) \(180\)
norman \(\frac {\frac {49 a^{4} x}{16}+\frac {207 a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {1471 a^{4} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {1967 a^{4} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {1617 a^{4} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {833 a^{4} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {49 a^{4} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {147 a^{4} x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {735 a^{4} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {245 a^{4} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {735 a^{4} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {147 a^{4} x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {49 a^{4} x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}\) \(238\)

[In]

int(cos(d*x+c)^2*(a+cos(d*x+c)*a)^4,x,method=_RETURNVERBOSE)

[Out]

1/192*(588*d*x+sin(6*d*x+6*c)+1056*sin(d*x+c)+381*sin(2*d*x+2*c)+144*sin(3*d*x+3*c)+45*sin(4*d*x+4*c)+48/5*sin
(5*d*x+5*c))*a^4/d

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.70 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {735 \, a^{4} d x + {\left (40 \, a^{4} \cos \left (d x + c\right )^{5} + 192 \, a^{4} \cos \left (d x + c\right )^{4} + 410 \, a^{4} \cos \left (d x + c\right )^{3} + 576 \, a^{4} \cos \left (d x + c\right )^{2} + 735 \, a^{4} \cos \left (d x + c\right ) + 1152 \, a^{4}\right )} \sin \left (d x + c\right )}{240 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

1/240*(735*a^4*d*x + (40*a^4*cos(d*x + c)^5 + 192*a^4*cos(d*x + c)^4 + 410*a^4*cos(d*x + c)^3 + 576*a^4*cos(d*
x + c)^2 + 735*a^4*cos(d*x + c) + 1152*a^4)*sin(d*x + c))/d

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 434 vs. \(2 (121) = 242\).

Time = 0.39 (sec) , antiderivative size = 434, normalized size of antiderivative = 3.42 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\begin {cases} \frac {5 a^{4} x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 a^{4} x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {9 a^{4} x \sin ^{4}{\left (c + d x \right )}}{4} + \frac {15 a^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {9 a^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2} + \frac {a^{4} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {5 a^{4} x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {9 a^{4} x \cos ^{4}{\left (c + d x \right )}}{4} + \frac {a^{4} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {5 a^{4} \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {32 a^{4} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {5 a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {16 a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {9 a^{4} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {8 a^{4} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {11 a^{4} \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} + \frac {4 a^{4} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {15 a^{4} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{4 d} + \frac {4 a^{4} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {a^{4} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} & \text {for}\: d \neq 0 \\x \left (a \cos {\left (c \right )} + a\right )^{4} \cos ^{2}{\left (c \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**2*(a+a*cos(d*x+c))**4,x)

[Out]

Piecewise((5*a**4*x*sin(c + d*x)**6/16 + 15*a**4*x*sin(c + d*x)**4*cos(c + d*x)**2/16 + 9*a**4*x*sin(c + d*x)*
*4/4 + 15*a**4*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + 9*a**4*x*sin(c + d*x)**2*cos(c + d*x)**2/2 + a**4*x*sin(
c + d*x)**2/2 + 5*a**4*x*cos(c + d*x)**6/16 + 9*a**4*x*cos(c + d*x)**4/4 + a**4*x*cos(c + d*x)**2/2 + 5*a**4*s
in(c + d*x)**5*cos(c + d*x)/(16*d) + 32*a**4*sin(c + d*x)**5/(15*d) + 5*a**4*sin(c + d*x)**3*cos(c + d*x)**3/(
6*d) + 16*a**4*sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + 9*a**4*sin(c + d*x)**3*cos(c + d*x)/(4*d) + 8*a**4*sin(
c + d*x)**3/(3*d) + 11*a**4*sin(c + d*x)*cos(c + d*x)**5/(16*d) + 4*a**4*sin(c + d*x)*cos(c + d*x)**4/d + 15*a
**4*sin(c + d*x)*cos(c + d*x)**3/(4*d) + 4*a**4*sin(c + d*x)*cos(c + d*x)**2/d + a**4*sin(c + d*x)*cos(c + d*x
)/(2*d), Ne(d, 0)), (x*(a*cos(c) + a)**4*cos(c)**2, True))

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.30 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {256 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} a^{4} - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{4} - 1280 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a^{4} + 180 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{4} + 240 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{4}}{960 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

1/960*(256*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))*a^4 - 5*(4*sin(2*d*x + 2*c)^3 - 60*d*x - 6
0*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*a^4 - 1280*(sin(d*x + c)^3 - 3*sin(d*x + c))*a^4 + 180*(12*d*x
 + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a^4 + 240*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^4)/d

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.83 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {49}{16} \, a^{4} x + \frac {a^{4} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {a^{4} \sin \left (5 \, d x + 5 \, c\right )}{20 \, d} + \frac {15 \, a^{4} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {3 \, a^{4} \sin \left (3 \, d x + 3 \, c\right )}{4 \, d} + \frac {127 \, a^{4} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac {11 \, a^{4} \sin \left (d x + c\right )}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^4,x, algorithm="giac")

[Out]

49/16*a^4*x + 1/192*a^4*sin(6*d*x + 6*c)/d + 1/20*a^4*sin(5*d*x + 5*c)/d + 15/64*a^4*sin(4*d*x + 4*c)/d + 3/4*
a^4*sin(3*d*x + 3*c)/d + 127/64*a^4*sin(2*d*x + 2*c)/d + 11/2*a^4*sin(d*x + c)/d

Mupad [B] (verification not implemented)

Time = 16.44 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.95 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^4 \, dx=\frac {49\,a^4\,x}{16}+\frac {\frac {49\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{8}+\frac {833\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{24}+\frac {1617\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{20}+\frac {1967\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}+\frac {1471\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24}+\frac {207\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^6} \]

[In]

int(cos(c + d*x)^2*(a + a*cos(c + d*x))^4,x)

[Out]

(49*a^4*x)/16 + ((1471*a^4*tan(c/2 + (d*x)/2)^3)/24 + (1967*a^4*tan(c/2 + (d*x)/2)^5)/20 + (1617*a^4*tan(c/2 +
 (d*x)/2)^7)/20 + (833*a^4*tan(c/2 + (d*x)/2)^9)/24 + (49*a^4*tan(c/2 + (d*x)/2)^11)/8 + (207*a^4*tan(c/2 + (d
*x)/2))/8)/(d*(tan(c/2 + (d*x)/2)^2 + 1)^6)